硕 导 个 人 简 介
个人简介
周志昂,教授,硕士生导师。中国运筹学会第十一届理事会理事,中国运筹学会数学优化分会第七届理事会理事,重庆市运筹学会第三届理事会常务理事。2008年3月-2011年7月,上海大学获运筹学与控制论专业博士学位;2000年9月-2002年12月,重庆大学获计算数学专业硕士学位;1993年9月-1997年7月,重庆师范大学获数学教育专业学士学位。2003年7月-至今,重庆理工大学理学院教师;1997年7月-2000年9月,内江师范学院数学系教师。2000年9月至今,从事优化理论及其应用研究。主持完成3项重庆市自然科学基金,2项重庆市教委科技项目。目前主持1项国家自然科学基金面上项目和1项重庆市教委科技重点项目。
研究领域
向量优化;随机优化;模糊优化;金融风险。
承担的主要项目
[1] 集和流形上的优化方法及其应用创新团队, 重庆英才.创新创业领军人才项目(创新创业示范团队类别), 202212-202511, 30万, 主持;
[2] 带变动序结构的集值优化理论和算法研究, 国家自然科学基金面上项目, 202201-202512, 51万, 主持;
[3] 集值均衡问题近似解的最优性与连续性研究, 重庆市教委科技重点项目, 202010-202309, 10万元, 主持;
[4] 非凸集值优化及其应用研究, 重庆市前沿与应用基础研究计划重点项目, 201707-202010, 20万元, 主持;
[5] 集值优化问题解的有效性研究, 重庆市前沿与应用基础研究计划一般项目, 201507-201806, 5万元, 主持;
[6] 非凸集值优化问题解的性质及最优性条件研究, 国家自然科学基金面上项目, 201501-201812, 6万元, 参与(共6人, 排名第3);
[7] 线性空间中集值优化的近似真有效解研究, 重庆市教委科技项目, 201301-201412, 2万元, 主持;
[8] 集值映射的广义凸性与集值最优化, 重庆市自然科学基金, 201108-201408, 5万元, 主持;
[9] 集值优化问题的最优性条件及其应用,重庆市教委科技项目, 201101-201212, 2万元, 主持。
代表性成果
[1] Zhiang Zhou, Min Huang, Elisabeth Köbis: Globally proper efficiency of set optimization problems based on the certainly set less order relation. Applicable Analysis, DOI:10.1080/00036811.2023.2181165(SCI);
[2] 周志昂, 陈望, 余国林: 基于改进集的统一含参广义集值均衡问题解映射的下半连续性.中国科学:数学, 2023, 53: 1025-1038;
[3] Zhiang Zhou, Min Kuang: Scalarization and optimality conditions of E-globally proper efficient solution for set-valued equilibrium problems. Asia-Pacific Journal of Operational Research, 2023, 40(2), 2250009(SCI);
[4] Zhiang Zhou, Wenbin Wei, Kequan Zhao, Caiping Liu: Scalarization of Benson nondominated solutions of set-
valued optimiztion problems with variable ordering structures in linear spaces. Journal of Nonlinear and Convex Analysis, 2023, 24: 435-446(SCI);
[5]周志昂, 杨爽: 集值映射的(C,ε)-超次微分和集值优化问题的最优性条件.数学学报, 2022, 65: 859-876;
[6]周志昂, 刘爽, 集值优化问题的E-强有效解. 应用数学学报, 2020, 43: 882-896;
[7]Zhiang Zhou, Xinmin Yang, Wang Chen: ε-Strong efficiency of a set and its applications in ordered linear spaces. Pacific Journal of Optimization, 2020, 16: 567-580(SCI);
[8]Zhiang Zhou, Wang Chen, Xinmin Yang: Scalarizations and optimality of constrained set-valued optimization using improvement sets and image space analysis. Journal of Optimization Theory and Applications, 2019, 183: 944-962(SCI);
[9]Zhiang Zhou, Wang Chen: Optimality conditions and duality of the set-valued fractional programming problem. Pacific Journal of Optimization, 2019, 15: 639-651(SCI);
[10]Zhiang Zhou, Xinmin Yang, Qiusheng Qiu: Optimality conditions of set-valued optimization problem with generalized cone convex set-valued maps characterized by contingent epiderivative. Acta Mathematicae Applicatae Sinica, 2018, 34: 11-18(SCI);
[11]Zhiang Zhou, Xinmin Yang, Xuan Wan: The semi-E cone convex set-valued map and its applications. Optimization Letters, 2018, 12: 1329-1337(SCI);
[12]Zhiang Zhou, Xinmin Yang, Kequan Zhao: E-Super efficiency of set-valued optimization problems involving improvement sets. Journal of Industrial and Management Optimization, 2016, 12: 1031-1069(SCI);
[13]Zhiang Zhou, Xinmin Yang: Scalarization of ε-super efficient solutions of set-valued optimization problems in real ordered linear spaces. Journal of Optimization Theory and Applications, 2014, 162: 680-693 (SCI);
[14]Zhiang Zhou, Xinmin Yang, Jianwen Peng: Optimality conditions of set-valued optimization problem involving relative algebraic interior in ordered linear spaces. Optimization, 2014, 63: 433-446(SCI);
[15]Zhiang Zhou, Xinmin Yang, Jianwen Peng: ε-Henigproper efficiency of set-valued optimization problems in real ordered linear spaces. Optimization Letters, 2014, 8: 1813-1827(SCI);
[16]Zhiang Zhou, Xinmin Yang, Jianwen Peng: ε-Optimality conditions of vector optimization problems with set-valued maps based on the algebraic interior in real linear spaces. Optimization Letters, 2014, 8: 1047-1061(SCI);
[17]Zhiang Zhou, Jianwn Peng: Scalarization of set-valued optimization problems with generalized cone subconvex-likeness in real ordered linear spaces. Journal of Optimization Theory and Applications, 2012, 154: 830-841(SCI);
[18]Zhiang Zhou, Xinmin Yang, Jianwen Peng: ε-strictsubdifferentials of set-valued maps and optimality conditions. Nonlinear Analysis:Theory, Methods & Applications, 2012, 75: 3761-3775(SCI);
[19]Zhiang Zhou, Xinmin Yang: Optimality conditions of generalized subconvexlike set-valued optimization problems based on the quasi-relative interior. Journal of Optimization Theory and Applications, 2011, 150: 327-340 (SCI).
联系方式
电话:02362563056; E-mail: zhi_ang@163.com