全靖

时间:2024-12-03 作者:


u 个人简介

全靖,男,副教授,博士,应用统计专业学位硕士生导师,重庆市第三届、第四届运筹学会理事。200309-200607月,获得重庆师范大学大学获运筹学与控制论专业硕士学位。200306-200607月,获得重庆师范大学获运筹学与控制论专业硕士学位。200803-201101月,获得上海大学获运筹学与控制论专业博士学位。201807-至今,重庆理工大学理学院统计与数据科学系专任教师。在International Journal of Wavelets, Multiresolution and Information Processing (IJWMIP)Grey Systems: Theory and Application》、Humanities and Social Sciences communications》、Complexity》、《Journal of Sichuan University (Natural Science Edition)》、《Bulletin of the Iranian Mathematical Society》、《Journal of Inequalities and Applications》、《Fixed Points Theory and Applications》、《Journal of Industrial and management optimization等刊物上发表学术论文近三十篇,主持和参加各级各类项目十余项。

u 研究领域

大数据统计/统计机器学习及应用/最优化方法及应用

u 承担的主要项目

[1]以创新应用能力为导向的专业学位研究生1+5”高质量培养模式研究,重庆理工大学研究生教育高质量发展项目(gzljg2023204), 2023.5—2025.5,主持.

[2]重庆理工大学-猪八戒股份有限公司应用统计研究生联合培养基地,重庆市研究生联合培养基地建设项目, 2022,主持.

[3]成渝地区双城经济圈乡村振兴的统计监测及推进路径优化研究, 重庆市教委人文社科一般项目(22SKGH321)2022.6—2024.6,主持.

[4]基于机器学习的信用风险评价方法研究,重庆市自然科学基金一般项(2021CCZ041),2021.10.01-2024.09.30,主持.

[5]数字经济驱动重庆市高质量发展的测度及机制研究,重庆市教委人文社科重点项目(23SKGH 251),2023.5—2025.6, 参与.

[6]川渝地区文化旅游产业统计监测,企事业单位委托、技术开发项目(2021Q348),2021.03.01-2023.02.28,主持.

[7]川渝地区乡村经济振兴与数字文化产业发展的动态耦合机制研究,企事业单位委托、技术开发项目(2021Q58),2021.09.28-2024.01.31,主持.

[8]基于演化学习的供应链金融信用风险智能识别及防范机制研究,重庆理工大学一般项目(2021PYR12),2022.01-2023.12, 主持.

[9]带变动序结构的集值优化理论和算法研究,国家自然科学基金委面上项目(2021CGZ006),2022.01.01-2025.12.31,参与.

[10]基于全局优化的半监督支持向量机及其应用,重庆理工大学科学研究项目(2019ZD52), 2019.07-2022.06,主持。

[11]多级分裂可行问题的收敛性研究,四川省教育厅重点项目(14ZA0270),2014.01.01-2105.12.31,主持.

[12]全局优化理论及应用研究,四川省教育厅一般项目(12ZB345), 2013.01.01-2014.12.31,主持.


u 代表性成果

[1] Jing Quan, Shengli Zhao, Liyun Su, Lindai Lv. A classification method of fuzzy semi-supervised support vector machines for the problems of imbalance, International Journal of Wavelets, Multiresolution and Information Processing (IJWMIP), Vol. 22, No. 1 (2024) 2350038: 1~23.

[2] Jing Quan, Xuelian Sun. Credit risk assessment using the factorization machine model with feature interactions, Humanities and social sciences communica-tions (2024) 11:234, https://doi.org/10.1057/s41599-024-02700-7, 1~10.

[3] Jing Quan, Bo Zeng, Dai Liu. Green Supplier Selection for Process Industr-ies Using weighted Grey Incidence Decision Model, Complexity, 2018, 4631670, 1~12.

[4]Jing Quan, Bo Zeng, Luyun Wang, Maximum entropy methods for weighted grey incidence analysis and applications, Grey Systems: Theory and Application, 2018, (2):144~155.

[5] Jing Quan, Guoquan Li, Global optimality conditions for mixed integer nonlinear programming problems, Journal of Sichuan University (Natural Science Edition), 2017,15(3):452~458.

[6]Jing Quan, Zhiyou Wu, Guoquan Li, Sufficient global optimality conditions for general mixed integer nonlinear programming problems, Bulletin of the Iranian Mathematical Society, 2016,42(5):1237~1246.

[7]Jing Quan, Shih-eng Chang, Strong convergence theorems for total asymptotically strict quasi-pseudo pseudo contractive nonself mappings in Banach spaces, Bangmod Int.J.Math.&Comp.Sci, 2015,1(1):41~53.

[8] Jing Quan, Shih-eng Chang, Multiple-set split feasibility problems for k- asymptotically strictly pseudo- nonspreading mappings in Hilbert spaces, Journal of Inequalities and Applications, 2014, 2014:69.

[9]Jing Quan, Zhiyou Wu, Guoquan Li, Ou Wu, Sufficient conditions for global optimality of semidefinite optimization, Journal of Inequalities and Applications, 2012, 2012:108.

[10]Jing Quan, Shih-eng Chang, Min Liu, Strong and weak convergence of an implicit iterative process for pseudo contractive semigroups in Banach space, Fixed points theory and application, 2012, 2012:16

[11]Jing Quan, Shih-eng Chang, Xiongrui Wang, Strong convergence for totalquasi-\phi-Asymptotically Nonexpansive Semigroups in Banach Space, Fixed Points Theory and Applications, 2012, 2012:142.

[12]Jing Quan, Zhiyou Wu, Guoquan Li, Global optimality conditions for some classes of polynomial integer programming problems, Journal of Industrial and management optimization, 2011,7(1), 67-78.

[13]Shih-eng Chang, Jing Quan, Feasible iterative algorithms and strong convergence theorems for bi-level fixed point problems, Journal of Nonlinear Science and Applications, 2016. 9, 1515–1528.

[14] Xianjun Long, Jing Quan, Proper Efficiency for Set-valued Optimiza-tion Problems and Vector Variational-like Inequalities, Bull. Korean Math. Soc., 2013. 50 (3), 777–786

[15]Zhiyou Wu, Jing Quan, Guoquan Li, Jing Tian, Necessary optimality conditions and optimization methods for cubic programming problems with mixed variables, Journal of Optimization Theory and Application, 2012, 153:408–435.

[16]Guoquan Li, Zhiyou Wu, Jing Quan, Global optimality conditions for nonconvex minimization problems, Journal of Inequalities and Applications, 2015257, DOI: 10.1186/s13660-015-0776-3.

[17]Zhiyou Wu, Jing Tian, Jing Quan, Optimality conditions and optimiza tion methods for quartic polynomial optimization, Applied Mathematics and Computa tion, 232 (2014), 968-982.

u 联系方式

电话:18423688372    E-mail: jquan@cqut.edu.cn


关闭

返回