邱世芳

时间:2024-12-03 作者:

u 个人简介

邱世芳,教授,硕士生导师。重庆市数学学会副理事长,中国现场统计研究会多元分析分会常务理事、资源与环境分会理事,全国工业统计学教学研究会理事。重庆市巴南区“菁英计划”人才。1989.09-1993.07,获得重庆师范学院数学教育专业学士学位;2005.09-2008.07,获得云南大学概率论与数理统计专业硕士学位(中国科学院数学与系统科学研究院联合培养);2008.09-2011.01,获得云南大学概率论与数理统计专业博士学位(中国科学院数学与系统科学研究院联合培养)。2011.01-至今,重庆理工大学理学院教师。主持了国家自然科学基金项目、重庆市自然科学基金创新发展联合基金项目等项目的研究,发表学术论文40余篇,被SCI收录近30篇。

u 研究领域

统计推断,应用统计

u 承担的主要项目

[1] 医疗健康大数据挖掘技术与预测模型研究, 重庆市自然科学基金创新发展联合基金项目,2024.07-2027.06,主持。

[2] 基于交叉试验设计数据的统计推断及应用重庆市教委科学技术研究重点项目2022.10-2025.09,主持

[3] 基于分层设计下的部分核实数据的统计推断及应用,国家自然科学基金面上项目,2019.01-2022.12,主持

[4] 基于部分核实数据的统计推断及应用,国家自然科学基金面上项目,2015.01-2018.12,主持。

[5] 基于分层设计下组内相关二值数据的统计推断及应用研究,国家统计局全国统计科学研究基金重点项目,2017.09-2019.09,主持。

[6] 生物医学研究中基于有误判分类数据的统计推断,重庆市自然科学基金计划项目,2012.09-2015.09,主持。

[7] 基于分层设计下的二重抽样数据的统计推断及应用,重庆市基础研究与前沿探索项目(重庆市自然科学基金),2018.08-2021.07,主持。

[8] 重庆市机动车排放特征及排放清单研究车载排放测试样本车筛选,横向项目,2018.06-2019.03,主持。

[9] 基于广义线性GLM模型的大气污染气象贡献核算评估技术开发,横向项, 2023.05-2024.02, 主持。

[10] 基于个体化心血管系统耦合模型的中心动脉压形成机制与无创检测研究,国家自然科学基金青年项目,2016.1-2018.12参与

u 代表性成果

[1] Qiu SF, Lei J, Poon WY, Tang ML, Wong RS & Tao JR. Sample size determination for interval estimation of the prevalence of a sensitive attribute under non-randomized response models. British Journal of Mathematical and Statistical Psychology. 2024, 77:508–531.

[2] Qiu SF, Zhang XL, Qu YQ & Han YQ. Multiple test procedures of disease prevalence based on stratified partially validated series in the presence of a gold standard, Journal of Biopharmaceutical Statistics. 2024, 34(5): 753-774.

[3] Qiu SF, Qu YQ, Zhang XL & Li C. Estimating disease prevalence,

diagnostic-test sensitivity and specificity under double-sampling design in the absence of a gold standard, Communications in Statistics - Simulation and Computation. 2023. https://doi.org/10.1080/03610918.2023.2265595

[4] Zou GY, Zou L, Qiu SF. Parametric and nonparametric methods for confidence intervals and sample size planning for win probability in parallel-group randomized trials with Likert item and Likert scale data. Pharmaceutical Statistics. 2023, 22: 418-439.

[5] Zou GY, Smith EJ, Zou L, Qiu SF, Di S. A rank-based approach to design and analysis of pretest-posttest randomized trials, with application to COVID-19 ordinal scale data. Contemporary Clinical Trials, 2023, 126: 107085

[6] Qiu SF, Tang ML, Tao JR, Wong RS. Sample size determination for interval estimation of the prevalence of a sensitive attribute under randomized response models. Psychometrika. 2022, 87(4): 1361–1389.

[7] Qiu SF, Wang LM, Tang ML, Poon WY. Confidence interval construction for proportion difference from partially validated series with two fallible classifiers. Journal of Biopharmaceutical Statistics, 2022, 32(6): 871-896.

[8] Qiu SF, Liu QS, Ge Y. Confidence intervals of proportion differences for stratified combined unilateral and bilateral data. Communications in Statistics - Simulation and Computation2023, 52(8): 3839-3862.

[9] Qiu SF, Tao JR. Confidence intervals for assessing equivalence of two treatments with combined unilateral and bilateral data. Journal of Applied Statistics, 2022, 49(13): 3414–3435.

[10] Qiu SF, Fu QX. Homogeneity testing for binomial proportions under stratified double-sampling scheme with two fallible classifiers. Statistical Methods in Medical Research. 2020, 29(12): 3547–3568.

[11] Qiu SF, He J, Tao JR, Tang ML, Poon WY. Comparison of disease

prevalence in two populations under double-sampling scheme with two fallible classifiers. Journal of Applied Statistics. 2020, 47(8): 1375–1401.

[12] Qiu SF, Poon WY, Tang ML, Tao JR. Construction of Confidence Intervals for the Risk Differences in Stratified Design with Correlated Bilateral Data. Journal of Biopharmaceutical Statistics. 2019, 29(3):446-467.

[13] Qiu SF, Guo LX, Zou GY& Yu D. Tests for homogeneity of risk differences in stratified design with correlated bilateral data. Journal of Applied Statistics. 2019, 46(14): 2491-2513.

[14] Qiu SF, Zeng XS, Tang ML and Poon WY. Test procedure and sample size determination for a proportion study using a double-sampling scheme with two fallible classifiers. Statistical Methods in Medical Research, 2019, 28(4): 1019-1043.

[15] Qiu SF, Lian H, Zou GY, Zeng XS. Interval estimation for a proportion using a Double sampling scheme with two fallible classifiers. Statistical Methods in Medical Research, 2018, 27(8): 2478–2503.

[16] Zou GY, Donner A, Qiu SF. MOVER-R for Confidence Intervals of Ratios. Wiley StatsRef: Statistics Reference Online, 2018, 1-11.

[17] Qiu SF, Poon WY, Tang ML. Confidence intervals for an ordinal effect size measure based on partially validated series. Computational Statistics and Data Analysis, 2016, 103: 170-192.

[18] Qiu SF, Poon WY, Tang ML. Sample size determination for disease prevalence studies with partially validated data. Statistical Methods in Medical Research, 2016, 25(1): 37-63.

[19] Qiu SF, Poon WY, Tang ML. Confidence intervals for proportion difference from two independent partially validated series. Statistical Methods in Medical Research, 2016, 22(5): 2250-2273.

[20] Poon WY, Qiu SF, Tang ML. Confidence interval construction for the Youden index based on partially validated series. Computational Statistics and Data Analysis, 2015, 84: 116-134.

[21] Qiu SF, Zou GY, Tang ML. Sample size determination for estimating a single prevalence and a difference between two prevalences of sensitive attributes using the non-randomized triangular design. Computational Statistics and Data Analysis, 2014, 77: 157-169.

[22] Tang NS, Qiu SF, Tang ML, Guang-Yong Zou, Dan Yu. Simultaneous confidence intervals of risk differences in stratified paired designs. Journal of Biopharmaceutical Statistics, 2013, 23: 361-377.

[23] Tang ML, Qiu SF, Poon WY. Confidence interval construction for disease prevalence based on partial validation series. Computational Statistics and Data Analysis, 2012, 56: 1200-1220.

[24] Tang ML, Qiu SF, Poon WY. Comparison of disease prevalence in two populations in presence of misclassification. Biometrical Journal, 2012, 54(6): 786-807.

[25] Tang ML, Qiu SF, Poon WY, Tang NS. Test procedures for disease prevalence with partially validated data. Journal of Biopharmaceutical Statistics, 2012, 22, 368-386.

[26] Tang NS, Qiu SF. Homogeneity test, sample size determination and interval construction of difference of two proportions in stratified bilateral-sample designs. Journal of Statistical Planning and Inference, 2012, 142: 1243-1251.

[27] Tang NS, Qiu SF, Tang ML, Pei YB. Asymptotic confidence interval construction for proportion difference in medical studies with bilateral data. Statistical Methods in Medical Research, 2011, 20: 233–259.

[28] Qiu SF, Tang NS, Tang ML, Pei YB. Sample Size for Testing Difference Between Two Proportions for the Bilateral-Sample Design. Journal of Biopharmaceutical Statistics, 2009, 19: 857–871.

[29] Tang NS, Tang ML, Qiu SF. Testing the equality of proportions for correlated otolaryngologic data. Computational Statistics and Data Analysis, 2008, 52: 3719–3729.

[30] 唐年胜,邱世芳. 非线性再生散度模型的Bayes估计。数理统计与管理,2007. 26(6)999-1008.

[31] 邱世芳,瞿颖秋,张晓良,曾莎。无金标准二重抽样设计下基于疾病流行率的置信区间宽度的样本量确定。数理统计与管理,2024, 43(2): 249-262.

u 联系方式

E-mailsfqiu@cqut.edu.cn



关闭

返回